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Abstract

Recession forecasting ranges from simplistic inference from the inversion of the yield curve
to sophisticated models drawing data from across the macroeconomic and financial spectra.
Each has advantages, in simplicity and informativeness respectively, but each suffers for these.
Demonstrating how the properties of yield spread time series themselves can foretell of im-
pending recessions we introduce data topology to economics. Through an exploration of the
topology of time series we highlight an untapped source of information with the potential to sig-
nificantly improve understanding of the economy without risking the overfitting of introducing
other variables.

1 Introduction

Questions are regularly asked about the timing of the next recession; business is wary and investors
are keeping a very close eye on events for a signal that the latest growth period is over. Recession
prediction is an established challenge for the forecasting literature and yet the yield spread inversion
remains a go to rule of thumb for determining when the recession will come. In an era of big data and
fast computing there is much that can be done to augment our understanding. A risk of replacing
a lack of information with a danger of over-fitting presents itself, however. Within the time frame
with sufficient available data there have been just 7 recessions, and two of those are the double-dip
of the early 1980s. Relative to the more than 50 years of available spread data this is a very low
number of positive outcome. Accuracy of forecasts naturally suffers. As we reflect upon the poor
performance of recession prediction to date (An et al., 2018) there is an early movement to look
back inside the simple yield spread for answers(Benzoni et al., 2018; Kozlowski and Sim, 2019). This
paper is another step in that direction.

Data topology locates patterns within a time series to unearth further information about its
evolving dynamics. Topological data analysis (TDA), as the study of the shape of data point clouds,
can give deep insights on time series in much the way it has been applied across the physical sciences
(Perea, 2019). Recent advances in the capturing of periodicity, and in the understanding of the point
clouds of longitudinal data, suggest this appreciation for the shape of data can bring value within
recession forecasting; Gidea and Katz (2018); Gidea et al. (2018) work on stock market crashes for
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example. Literature discussing periodicity on the exit from recessions (Clark, 2004; Wosnitza and
Sornette, 2015), and the chaotic dynamics on the run into downturns all offer basis for there to be
interest in the behaviour of the yield spread series relative to recessions. This paper contributes an
evaluation of that potential against the most popular of recession forecast models. Specific focus is
placed on the landscape of the point cloud, captured by its norm, and the periodicity of the yield
spread extrapolated from the time series using proprietary code.

Recognising the desirability of using minimal numbers of series for maximal benefit this paper
offers an alternative enhancement to the yield spread forecast models. In so doing three contributions
to the literature from this paper are made. Firstly we demonstrate that it is not just the spread
that foretells of impending recession; its behaviour along its evolution is also a factor. Secondly,
we demonstrate within economics for the first time, an approach that has already made inroads
into time series understanding in chemistry, biology and the physical sciences. The advancement of
TDA methodology employed in this paper takes lessons from extant work in the interdisciplinary
sphere to produce a deeper evaluation of the properties of time series. Finally, in addition to gaining
improved recession prediction by augmenting the TDA, we contribute to the wider discussion on the
periodicity, and behaviour, of the yield spread.

The remainder of the paper proceeds as follows. Section 2 discusses the present state of the liter-
ature on recession forecasting before 3 introduces the topology of time series and the understanding
gained therefrom. We introduce our interest rate data in Section 4 before expositing the topology of
the US series in Section 5. Section 6 presents the results of our forecasting, with Section 7 reviewing
the implications of our work. Conclusions and directions for future work are offered in Section 8.

2 Forecasting Recessions

2.1 Predicting with the Yield Spread

Mishkin (1990) and Mishkin et al. (1990) identify the links between the yield curve, inflation and real
economic activity as direct derivatives of macroeconomic theory and the Fisher equation. Empirical
support to this is offered by works such as Estrella and Mishkin (1997). On broader economic activity
early work by Harvey (1988), Laurent et al. (1989) and Chen (1991) all extended the focus in the
realm of economic and financial activity. Yield spreads were to be regarded as a powerful predictor of
a large range of activities. Within the theory that had motivated this initial strength of application
also lies an acknowledgement that the relationships are likely to be temporally variant and so more
recent work has questioned the strength of the earlier findings (Ang et al., 2006, for example). A call
emerges to expand the explanatory set beyond the yield curve to counter the changing relationship
with output (Ang et al., 2006). For our purposes these additional links represent channels motivating
an ability to predict recessions.

Estrella and Mishkin (1996, 1998) and others work on recession prediction notes the long associ-
ation of yield spread inversions with the periods determined by the National Bureau for Economic
Research (NBER) as being recession dates. This enduring relationship means that the treasury
yield spreads continue to be the mainstay of works seeking to predict when economies will turn
downward. Further when they do turn onto negative growth trajectories when will they recover?
For this again the yield spread finds value. In addition to the inflation channel that drove the early
work on yield spreads, further motivation for the value of the yield spread lies in its relationship
to investor expectations about the future economic position of the market.Negative yield spreads
intuitively work from a lack of faith in the delivery of short term returns versus those promised on
longer investments. Movement in the yield curve may thus be associated with uncertainty about the
future, uncertainty that then manifests in recession. Estrella and Mishkin (1996) remark that the
yield spread already represents a forward looking expected change in interest rates.

There is also a growing body of work that concentrates on the point at which recession is entered.
Stock and Watson (2014) comprehensive review of dating methodologies, dissecting identification
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into either average-then-date or date-then-average approaches. NBER processes of first considering
series then looking for the date are examples of the former, whilst the increasing wealth of multivari-
ate works discussed subsequently exemplify the latter. For most studies the NBER dates remain the
target; they offer ready comparison with the existing literature and deliver an understood output to
quantify improvement against.

Recession prediction modelling traditionally employs binary outcome models, particularly the
probit model, to work out the probability that there will be a recession a fixed number of periods
ahead. Such frameworks apply naturally where the outcome is a binary one; the economy is in
recession or it is not. In this paper we also utilise a similar approach for comparability. A ready
ability to construct predicted recession probabilities and an ease of interpretation of the contribution
of in dependent variables thereto, further commend simpler approaches. However, Chauvet and
Potter (2005) identifies an inherent flaw in the binary approach; information about recession status
will affect the likelihood of continuation and is accrued after the time at which the predictions are
made. A proposal for probability of first entering recession, and one for continuing are proposed
(Chauvet and Potter, 2005). With just 7 recessions this further reduces the number of positive
outcomes and presents a modelling challenge beyond this paper.

Binary statuses also lend well to classification modelling; machine learning algorithms are then
well placed to build from observed recessions to identify the characteristics indicative of a future one.
Berge (2015) early work on machine learning identified the challenge that classifications will always
perform well when they predict no recession and there are very few recessions. Giusto and Piger
(2017) argues the lack of a known data generating process in the yield spread means that traditional
parametric modelling is not optimal. Natural disagreement between contemporary approaches and
the NBER decisions are to be expected, as is the ability of data driven classification to determine
faster than the NBER committee. However, on this Giusto and Piger (2017) remarks that the NBER
focus is accuracy and that it is outperformance of alternative classification models that provides
support for machine learning. Davig and Hall (2019) combines the classification and turning point
literature to demonstrate how naive Bayesian techniques improve prediction of recession starts. In
their work Berge (2015) argue that heterogeneity in agents will further muddy the delineation of
periods, Davig and Hall (2019) responds to such with the suggestion that stronger penalties be
applied if recessions are predicted far from actual dates. In what follows we note the propensity of
all models to create small false positives of the type that could be penalised more strongly.

Yield spreads are inherently an indicator of investor expectations about the long-term state of the
economy. Their subdivision into inflation expectations and associated real interest rate risk premia
have offer more insight into why. Duffee (2018) and Benzoni et al. (2018) both identify investors
worries about future inflation as being an important risk to which longer term interest rates must
offer compensation. Through this channel those variables that would typically impact inflation will
influence the interest rate expectations of traders. As the economy moves towards recession so the
expectation for growth, and hence inflation, drops. A circle back to the Fisher equation and the
literature that first prompted the use of the yield spread iteslf as a predictor Mishkin (1990),Estrella
and Hardouvelis (1991) etc. is formed.

Contemporary work thus falls into three categories. Firstly, those which seek to augment the
prediction set to obtain better fit through improved information. Secondly, those that adopt new
methodologies for prediction and classification have demonstrated how insights from new approaches
can improve forecasting. Finally, there is the work that nests the yield spread in the wider economic
model to identify turning points and hence predict recession in this way. As reviewed each approach
has its concerns and to date there is little to signal the end from the simple inverted yield curve rule
of thumb.

3



2.2 Periodicity and Interest Rates

Log-periodicity as a forewarning of crashes is increasingly seen as of value to investors in stock
markets (Sornette et al., 2001; Clark, 2004; Chang and Feigenbaum, 2006; Matsushita et al., 2006;
Chang and Feigenbaum, 2008). This literature typically studies the build up to known crashes and
then imposes a log-periodic wave upon the observed time series. Fitting such curves identifies an
increasing period as the market moves into a period of “chaos” ahead of the crash1. By looking
in isolation at particular crashes the work avoids the challenge of fitting a longer term measure, or
understanding periodicity across the whole time series being studied. There is however a unanymity
in the identification of periodic behaviour prior to crashes. Whether in the US markets as studied
in early works (Sornette et al., 2001; Clark, 2004, for example) or the contemporary studies of
Asian markets (Li, 2017; Ko et al., 2018), there is a consistency in the demonstration of increased
periodicity ahead of crashes.

Observations of log-periodicity within the study of yield spreads have found its presence in
the exit from, rather than entry to, recession. For this reason it is more likely that an absence
of periodicity will be linked to recession forecasting. However, Benhabib et al. (2002) identifies
a number of channels through which yield spread behaviour may become chaotic, or periodic, as
a result of prevailing economic conditions. Zhou and Sornette (2004) notes a feedback from the
log-periodicity of the stock markets going into the 2001 crash. In that case a link to interest rate
dynamics is made to say that there was more periodic behaviour in 2002 precisely because of the
2001 dot-com crash. Both Wosnitza and Leker (2014) and Wosnitza and Sornette (2015) find log
periodic behaviour within the credit spread, critically dismissing the possibility that these patterns
could be random. We do identify periodic behaviour on the short scale in the work that follows in
the same vein.

A feature in the periodicity literature is that the behaviour of the market changes in the build up
to an event. In both the stock market and credit spread cases the periodicity is at its most intense
close to the event being forecast; before in the case of market crashes and immediately afterwards
in the case of yield spreads. However recession forecasting takes a longer term perspective, typically
a horizon of 12 months (Estrella and Trubin, 2006). Consequently in looking to periodicity we are
asking for longer term evidence within the series, seeking to identify the first seeds of behaviour
rather than being free to watch the period all the way to the event.

To date there is an identification of potential periodicity in parts of the yield spread series, an
acknowledgement that peridoic behaviour in financial markets may be a pre-cursor to crashes, but no
solid attempts to bring the two together. An identified temporal challenge is undoubtedly part of the
motivation there for. This paper acts on that bridge between periodicity and recession forecasting
as a preliminary exploration of the potential for periodicity to forecast further ahead.

3 Topology of Time Series

Gidea and Katz (2018) assertion that the persistence landscape can be used as a useful tool for
crash prediction represents a natural launch point for reviewing links between yield spread topology
and the prediction of recessions. In this section we define the persistence landscape and explain
how that may then give rise to the norms. Secondly we explore how persistent homology can help
detect periodicity following closely work by D lotko et al. (2019). So doing we provide a toolkit to
analyse time series. Finally we use empirical examples to show the robustness of this new addition
to understanding. In so doing foundations for our analysis of the yield spread are laid.

1It must be noted here that we do not refer to “chaos” under its formal mathematical definition but as an intuitive
nod to seeming irrationality in the behaviour of the series.
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Figure 1: Persistent Homology Illustration

Filtration level b Filtration level d

Notes: Point cloud in two dimensions for illustration only. Data shown as large dots. All circles are of radius ε from
the datapoint at their centre. Panel (a) shows a low filtration level at which the final edge forms between the two
points on towards the lower right of the rectangle. This leaves an uncovered area in the middle of the shape where
balls do not overlap but there are no points. This is referred to as a “hole”. Panel (b) shows a higher filtration level
ε = d at which all the larger balls overlap. In persistent homology b represents the birth of the “hole” and d the
death.

3.1 Persistent Homology and Landscapes

Data packages caring a number of independent information can be summarized as so called point
clouds in a high dimensional space. As such they are carrying certain geometrical information which
may not be apparent upon immediate observation2.Persistent homology provides an understanding
that point cloud through its shape. In what follows examples will be presented in two dimensions
to facilitate discussion; such representations seem trivial in the sense that we can visualise without
any TDA tools but do offer the intuition necessary to make the leap into multiple dimensional point
clouds.

Intuitively let us imagine drawing ball of radius r centered on each point of the considered
dataset. Where the balls overlap then we may regard those points as connected and we will denote
it by plotting and edge between those points. As we increase r the more and more points will be
considered similar, and therefore connected by an edge. Inherently the shape that is created will
get larger and larger. Persistent homology provides us with the tools to formalise the process of
identification delivering metrics with practical interpretation.

Consider the artificial example of Figure 1. In this case there are five points in the space. A
collection of edges for the initial choice of the radius r is plotted in panel (a). This level is selected
as that at which the final two points, those to the lower right of the plot, are connected so that the
collection of edges closes up into a cycle. It can be seen that there is an area at the centre of the
figure where the balls do not overlap. At this stage the persistent homology is able to identify this
area and hence we term it a “hole”. The presented hole will be assigned a dimension 1 as it can
be surrounded by a collection of (one dimensional) edges. Features in dimension 0 correspond to
the connected components of the set. Had we plotted the step by step expansion of the circles the
number of features (connected components) in dimension 0 would have gone from 5, the points, to
4 as the first pair connected, to 3, to 2, and finally to 1 as the full connections were made. Because

2In this regard we are familiar with visualising data in two, or three, dimensions but struggle with shape identifi-
cation in more than that.
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the hole forms at ε = b we term b as the birth of the feature. Panel (b) adds a second set of larger
circles with radius d. Here we can see that the balls now overlap, the hole has disappeared. There
are also two new edges formed as more of the balls overlap to create edges; the longer of these edges
is the one that closed the hole. We term this closure of the hole as its death. Hence b is the birth
and d is the death, d− b is the life of the hole.

In a real dataset the number of features in both in dimension 0 and 1 will be much greater;
there will be many births and deaths. All those features can be assembled into a single large set of
points. From this we construct a persistence landscape. The landscape plots an iscocoles triangle
centered at (b + d)/2 and of height (b + d)/2. By building these on top of each other we obtain a
full landscape that can be enumerated level by level. The norm of this landscape, denoted as L,
is the sum of areas of all those triangles. The larger the value of L the more features there are in
the point cloud. Robustness is obtained by considering the life of features and placing a minimum
requirement thereupon. Short-lived features would suggest that there was little to be read into their
existence, they may simply be noise. Larger L comes from longer lives.

In the context of multiple variables the notion of many axes (dimensions) is well understood.
For a univariate time series there is a need to think further about the construction of a point cloud.
TDA analysis of time series begins from the construction of a point cloud in d dimensional space.
A sliding window embedding (SWE) is performed on the series, defined by the number and size
of jumps that are used. In this paper we abstract from a discussion of jump size and include all
observations within the window3. This is a different approach to the one adopted in Gidea and
Katz (2018), where they construct their point cloud from four time series and hence have a cloud of
dimension four without any embedding. Their sliding window is simply a movement through time
to capture a subsample of 50 points from the longer set.

An SWE captured over a fixed number of time periods creates the point cloud that informs
our periodicity estimation. Defining the length of the embedding as m then for a series x the
first line of the embedding will be x1, x2, ..., xm. Moving forwards one jump the next point will
be x1+j , x2+j , ..., xm+j , the third line will be x1+2j , x2+2j , ..., xm+2j . We continue this until the
length of the window, w, which has x1+(w−1)j , x2+(w−1)j , ..., xm+(w−1)j . The resulting w point, j
dimensional, point cloud is then analysed using persistent homology in the way described above.

In this paper we will use an observation that existence of a large cycle in dimension 1 is a
consequence of the periodicity of the function and we will be searching for that.

3.2 Periodicity

Within time series analysis periodicity, dynamics and persistence are all well defined concepts, as
they are within the TDA literature. Here specific meaning is taken from the latter for mathematical
consistency. Periodicity is thought of as the time between occurrences of the same motif within the
time series no matter of the starting position. To observe the same shape once may be coincidence
and so we require a second repetition to make any claim about (local) periodicity. Dynamics are
understood through the movement of the time series through space; cycles for example form where
a series moves away from a point and then returns. As the point in SWE is the representation
of local motif in the time series, recurrent returning to the same elements of the point cloud is
direct evidence of the periodicity of the input time series. Persistence is a measure of the extent to
which observed topologies are robust to changes in the parameters informing measurement. Where
the features are identified consistently then we can regard the patterns as persistent, whilst rarely
observed phenomena are not persistent. All of these concepts are illustrated within Figure 2

As demonstrated in Figure 2 a recurring signature in the SWE would be identified as points
yt, yt+1, yt+2, ... recur at yt+h, yt+h+1, Yt+h+2, ... and again at yt+2h, yt+2h+1, .... Through identifi-

3However, we are able to prove that using jumps does not invalidate the approach. Using more points simply
means more computational time is required. In this paper the additional processing of using a unitary jump size is
insignificant deterrent from maintaining all of the information in the series.
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Figure 2: Time Series Properties

Notes: Segment of an artificial time series sketched to illustrate key elements as understood in this paper. Lighter
(yellow) shaded points represent a recurring motif used to extract period. Darker shaded (red) points illustrate a
motif within the series which only recurs once and is regarded as not being persistent. Taking the lines as each
representing one unit of time, the period of this series would be estimated as 8 units.

cation of this we identify h4. In most cases the time series will contain noise, meaning that the
identification of periodicity is not as simple as pattern matching. Our process for identification
therefore takes the SWE and overlays a series of landmark points. For a cycle with some noise an
SWE with cyclicity would be an annulus, the time series going round the circle to return period-
ically approximately to its original value. Intuitively therefore if we take landmark points around
the annulus it will pass these in order and at the same period. Landmark points are created by
taking the start point of the series then locating the point furthest therefrom. Next we identify the
point furthest from these two landmarks and keep going until a pre-defined number of landmarks
are found. Figure 3 illustrates this process. Note that the labelling is done once points are identified
such that the sequence is intuitive; the actual labelling of points is not important as the algorithm
recognises the points locations within the cloud.

3.3 Periodicity and Artificial Series

To demonstrate the robustness of the method we will employ benchmark functions consisting of four
instances of sinusoidal functions with an increasing level of noise. Noise is simply a random sample
from a uniform distribution [0, no] in which no is equal to 0,1,2 and 3. We choose the uniform
distribution as this has a high tail probability, ensuring that the observed values are away from the
underlying function more than would be the case for a mean centered distribution. Evaluating the
period for the sinus function Table 1 presents the results for a series of coefficients on the number of
jumps and the number of points in the subsequence, parameters j and w of the SWE respectively5.
For this table we use 10 landmark points.

In this section we use sinx sampled from 0 with the step size 0.1 such that the period of the
function is 10×2π ≈ 63. Onto the function we add a uniform noise term of magnitude 0, 1, 2 and 3.

4A full exposition of the underlying mathematics of the process adopted here can be found in [DLOTKO2019].
5A full table for each noise level, and each number of landscapes is available upon request. We do not include

these here for brevity.
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Table 1: Period Estimates for Sinus Function (sinx) with Noise
Noise Jumps Length of Sliding Window (w)

(j) 120 160 170 180 190 200 250 300

Noise 0 50 58.92 62.94 62.98 63.00 63.00 63.00 63.00 63.00
(15.02) (0.23) (0.13) (0.00) (0.00) (0.00) (0.00) (0.00)

60 55.17 62.95 63.00 63.00 63.00 63.00 63.00 63.00
(19.87) (0.21) (0.07) (0.00) (0.00) (0.00) (0.00) (0.00)

70 53.71 62.91 63.00 63.00 63.00 63.00 63.00 63.00
(21.65) (0.45) (0.07) (0.00) (0.00) (0.00) (0.00) (0.00)

100 47.26 55.53 57.95 60.58 62.90 62.96 63.00 63.00
(26.82) (20.23) (16.93) (11.80) (0.39) (0.20) (0.00) (0.00)

150 41.25 43.04 45.00 47.14 49.49 62.85 63.00
(29.79) (29.13) (28.26) (27.12) (25.60) (0.36) (0.00)

200 46.62 62.61
(27.26) (0.49)

Noise 1 50 58.75 63.27 63.38 63.54 63.64 63.64 63.78 64.28
(14.30) (0.85) (0.81) (0.77) (0.70) (0.63) (0.48) (0.45)

60 56.43 63.05 63.30 63.42 63.53 63.56 63.80 63.99
(18.15) (0.76) (0.65) (0.60) (0.51) (0.51) (0.40) (0.10)

70 54.21 63.00 63.22 63.40 63.50 63.58 63.83 63.98
(21.21) (0.75) (0.63) (0.53) (0.51) (0.50) (0.37) (0.14)

100 47.27 55.80 58.32 61.03 63.12 63.28 63.93 64.00
(26.58) (19.95) (16.56) (11.17) (1.34) (1.25) (0.25) (0.00)

150 43.34 45.29 47.40 49.70 52.24 63.83 64.00
(29.29) (28.50) (27.44) (26.04) (24.14) (0.41) (0.00)

200 45.00 63.18
(28.63) (0.39)

Noise 2 50 55.89 60.50 60.73 61.01 61.33 61.52 62.20 63.15
(13.48) (1.81) (1.79) (1.73) (1.66) (1.58) (1.13) (0.76)

60 53.76 61.39 61.76 62.25 62.39 62.62 63.01 63.41
(17.54) (1.82) (1.48) (1.10) (0.95) (0.87) (0.69) (0.67)

70 53.23 61.83 62.23 62.55 62.83 63.00 63.30 63.07
(19.04) (1.95) (1.44) (0.99) (0.69) (0.68) (0.59) (0.29)

100 47.73 56.49 59.06 61.80 62.62 62.86 63.31 63.67
(24.99) (18.05) (13.98) (6.15) (1.05) (0.63) (0.48) (0.47)

150 42.52 44.47 46.52 48.70 51.02 62.28 63.87
(28.05) (27.26) (26.20) (24.86) (23.21) (2.79) (0.34)

200 46.69 63.37
(26.94) (0.65)

Noise 3 50 52.15 53.93 54.25 54.38 54.59 54.77 55.96 56.86
(4.40) (1.41) (1.34) (1.31) (1.32) (1.18) (1.09) (0.65)

60 50.10 54.37 54.74 54.88 54.92 54.99 55.73 56.42
(11.00) (1.55) (1.17) (1.11) (1.06) (1.14) (1.27) (1.15)

70 47.75 53.90 54.39 54.74 54.90 55.23 56.14 56.94
(14.72) (1.89) (1.83) (1.66) (1.55) (1.34) (1.00) (0.66)

100 43.78 51.51 53.69 55.20 55.45 55.59 56.25 56.21
(19.60) (12.53) (8.11) (1.29) (1.41) (1.45) (1.02) (0.57)

150 38.72 40.38 42.07 43.82 45.70 55.33 56.00
(23.66) (23.06) (22.34) (21.29) (19.89) (1.44) (0.00)

200 42.64 56.15
(22.14) (0.61)

Notes: Time series estimated as sinx for x ∈ [1, 40] at increments of 0.01. True period is 10× 2π or 63 to nearest
whole number. Values report average of period estimates for observations between w and the length of the time
series T inclusive. Standard deviations of the estimates over the range [w, T ] are included in parentheses. All jumps
are of size 1. 10 Landmarks are used in the estimation of the periodicity.
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Figure 3: Landmark Construction

Notes: Plot shows eight points around a sliding window embedding of a time series. A periodic function would move
around the circle through all landmark points, repeating with every period. A sequence constructed from the
landmarks would be expected as A, B, C, D, E, F, G, H, A, B, C, D, E, F ,G ,H, A, ... , H, A... The time between
A’s, or B’s, or C’s etc. should then inform on the period.

Table 1 shows that estimates converge towards the true periodicity as the numbers of points in the
subsequence increase. Formally to identify the period we need two periods to be completed on top of
the number of jumps The intuitive reason for that is because to be able to claim that the considered
time series repeat itself, at least one full repetition is required. As expected the period is correctly
identified for j = 180 when j = 50 and noise is 0. Approaching this we see correct identification of
the period with standard deviations. As the noise level increases the estimation is harder, although
we see estimation close to the underlying period for both noise 1 and 2. As the noise reaches 3 the
estimates are lower, this is because the measure is how quickly the function returns to the original
landmark; noise means this will happen faster than it would have done otherwise.

Landmarks are pivotal to the identification of the period and are chosen according to the pref-
erences of the user. However, we can demonstrate a robustness to the selection provided that the
number does not get too close to the number of points in the subsequence. Recognising the correct
identification of the period when j = 60 we plot the estimates of the period for each noise level
when there are between 5 and 12 landmarks. Figure 4 provides the results with the horizontal axis
representing the number of points in the subsequence w. Observed tightness of the lines shows the
robustness of the estimates, with the lower numbers of landmarks coming closer to estimating the
known true period. Figure 4 also demonstrates the effect of noise through the comparison across
panels (a) to (d), lower period estimates coming from the potential to return to landmarks much
quicker in the presence of noise.

Robustness to noise, and the consistency of estimates across parameters, thus commend the
TDA approach for the estimation of periodicity. However, there is no evidence of a continuous
period within yield spread data, and hence it is the speed at which estimates are formed that is the
main advantage demonstrated in this example.
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Figure 4: Estimation of Period for Sinus Function with Noise
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Notes: Lines plot the estimated period for the function sinx constructed at intervals of 0.01 such that the true
period is 10× 2π u 63. Thin black lines show l = 5, thick black lines show l = 10, with grey lines added for
l = 6, 7, 8, 9, 11, 12. Horizontal axes show number of points in subsequence, w.
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Figure 5: US Yield Spread (1961-2019)

Notes: Thick line denotes yield spread calculated according to equation 2, with adjustment to the three month rate
following equation 1. Grey areas indicate the NBER recession dates.

3.4 Selecting Parameters

In the context of series with known period it is easy to parameterise the model. When the true
period is unknown, or is varying, it is required that the researcher select appropriate numbers of
points. The choice of w will impact upon the ability of the detection to locate longer patterns within
the data. In selecting a window size of 100 and a number of jumps of 50 this paper is seeking to
identify patterns of up to one month, one month being approximately 22 trading days. As specified
we are not able to recover the economic cycle as the overriding period; this could be achieved by
changing to a longer window and adding larger jumps to maintain a manageable point cloud. Finally
a sensitivity analysis should be conducted to ensure robustness.

4 Data

Recognising the longevity of the U.S. data as critical to the understanding of investors renders the
Treasury Yields for the U.S. the optimal test bed for our analysis. What follows would readily extend
to other countries and represent an interesting extension. A benchmark for all recession forecasts
remains the yield curve inversion, captured in the yield spread. Here we follow Estrella and Trubin
(2006) to adjust the three month rate. Equation (1) defines the adjustment.

rtB3m = 100 × 365(rtT23m/100)

360 − 91(rtT23m/100)
(1)

where, at time t, rtT23m is the 3-month treasury rate from the secondary market rather than the
primary rate quoted in the H.15 release. In this way the rtB3m is bond-equivalent and offers “max-
imum robustness in predicting US recessions” (Estrella and Trubin, 2006, p.3). The yield spread is
then calculated from the 10 year tresury, rtT10y as:

Spreadt = rtT10y − rtB3m (2)

Our resulting yield spread series is plotted in Figure 5. Grey boxes shade the recessions.Recession
timing is taken from the National Bureau for Economic Research (NBER), with 7 recessions falling
within the time frame of our data coverage. These recessions are visible in Figure 5. As established
there are a series of inversions prior to recessions, with a single false positive where the yield curve
inverted in the 1960s but there was no recession.
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Table 2: TDA Monthly Measure Summary
Measure Aggregation Mean s.d. Min Max
Panel (a): Spread topology:
L1 norm Max 0.066 0.097 0 1

Avg 0.030 0.079 0 0.948
Period Max 2.269 9.427 0 72

Avg 0.497 0.273 0 35.10
Panel (a): Demeaned spread topology:
L1 norm Max 0.065 0.102 0 1

Avg 0.050 0.086 0 0.956
Period Max 2.094 9.236 0 74

Avg 0.439 2.391 0 29.67

Notes: TDA analysis performed using 50 jumps with a subsequence of 100 points and 10 landmark points
(j = 50, w = 100, l = 10). Summary statistics reported based on monthly compilation from daily data. Aggregation
is either Max (maximum for the month) or Avg (average for measures obtained in that month).

5 Topology of US Yield Spreads

To demonstrate the theory of Section 3 for yield spread data we provide a more detailed look at the
topology of the US yield spread. Table 2 provides summary statistics of the series revelaling slight
differentials between the use of the spread, or the demeaned spread, for constructing the persistent
homology. We see that there are a number of features forming through the time series, with the L1

norm in panel (a) of Figure 6 showing a high degree of volatility throughout. The largest peaks in
the range occur during the recessions of the mid 1970s, early 1980s and the global financial crisis of
2007-09. Interestingly we do not see any movement of the norm during the 2001 recession, whilst
the recession of the early 1990s does not influence the norm series by much. Periodicity estimates
likewise peak near the recessions, with some large peaks occurring in the time prior to the 2001
recession. There are a number of peaks in more recent years; these may be signals of impending
recession but as the yield spread remains positive it is questionable whether this is the case.

From the period plot limited evidence of the post recession periodicity is found. Arguably it
is only the recession of the early 1980s that led to any form of periodicity in the aftermath. As
captured by the TDA code there is limited support for the log periodicity discussed in Clark (2004),
Wosnitza and Sornette (2015) and others. However, to capture this better we can subtract a moving
average of the spread from the series. In this way we can identify any periodic behaviour around
the moving average. Figure 7 results.

In this case the norm spikes are very similar and again concentrate around the recessions. Unlike
the spread homology, which did not peak in the 2001 recession, we note that the de-meaned spread
does have a small peak within the NBER recession period. Of more interest from Figure 7 is the
periodicity in panel (b). Here there are notable peaks in the post recession period as foretold by the
log-periodic literature. However there is also evidence of periodicity on the way down towards the
crashes;note particular spikes ahead of the 2008 global financial crisis and the 1990s recession. If a
criticism of the spread is that it did not predict the 1990 recession then the addition of periodicity
has the potential to address that.

From the illustration there is potential for the TDA L1 values to provide forecasting ability for the
continuation of recessions, whilst the periodicity is unlikely to contribute to the overall improvement
of recession prediction. When we subtract the one year moving average of the spread periodicity
does look like a potentially useful measure, particularly for those recessions where the spread alone
has been noted to forecast poorly.
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Figure 6: Topology of the US Yield Spread (1961-2019)

Panel (a): Dominant Interval Length (L1 Norm)

Panel (b): Periodicity estimate

Notes: TDA analysis performed using 50 jumps with a subsequence of 100 points and 10 landmark points
(j = 50, w = 100, l = 10). Grey areas denote the NBER recession dates.
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Figure 7: Topology of the De-meaned US Yield Spread (1961-2019)

Panel (a): Dominant Interval Length (L1 Norm)

Panel (b): Periodicity estimate

Notes: TDA analysis performed using 50 jumps with a subsequence of 100 points and 10 landmark points
(j = 50, w = 100, l = 10). Grey areas denote the NBER recession dates.
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6 Forecasting Recessions

To maintain comparability with the extant literature we adopt a probit approach to the modelling of
recession probability, this follows directly the work of Estrella and Mishkin (1996, 1998). A binary
outcome R is defined which takes the value 1 in any month which is classified as a recession by the
NBER. As we seek to forecast we define Rt+p as the recession dummy p periods forward from time
t. Taking the TDA variables DINTt and PERt as being the values of DINT and PER in month
t, as augmentation to the spread, spreadt, we fit:

Rt+p = F (α+ β1spreadt + β2DINTt + β3PERt) (3)

with the function F () being the cumulative normal distribution function. In this paper we specify
three versions of the model, first with only the yield spread (β2 = β3 = 0). Next, inspired by the
work of Gidea and Katz (2018) we introduce only the L1 norm of the persistence landscape, DINT .
This second specification imposes β3 = 0. Finally we estimate a model with both TDA variables.
Models are estimated for both the topology of the spread and the de-meaned spread. Likewise we
fit both the maximum and average values for the TDA variables within the month. Necessarily the
paper only features a subset of the results with full tables available in a supplementary appendix.

6.1 Spread Topology: Maximum Monthly TDA Values

As our first case we consider the topology of the yield spread as plotted in section 5. Table 3
contains estimates for a selected p range. Across four panels we report the three specifications of 3
and finally a series of residual deviance tests to aid model selection. An immediate message from
Table 3 is the almost complete significance of the yield spread as a predictor, only at the 18-month
horizon is the L1 norm not significant. A strong significance is assigned to the constant term in
the model in all cases recognising there would be scope to add more explanatory variables. Once
introduced in the third model we see that the period estimate provided by our novel approach does
not produce significance. This would be consistent with the literature identifying log periodicity as
something that occurrs post recession rather than in the years preceding. Where significant high
norms are associated with high recession probabilty; this is in line with the “chaotic” association
between similar increases and crash probability in cryptocurrencies and stock markets (Gidea et al.,
2018; Gidea and Katz, 2018).

Comparisons of model fit are provided through an exploration of the residual deviance of the
models. Both the L1 norm augmented model, and the full model with both norms and periods,
outperform the basic spread model. The former holds throughout, whilst the latter is true at
shorter horizons. Given the lack of significance inclusion in the model will naturally bring down the
prediction accuracy.

Although the coefficients from the table give some impression of the way that the variables
impact upon the probability of recession it is more instructive to plot that predicted probability as
a visualisation of model fit. In Figure 8 we use a black line to plot Model 1, a red line for Model 2
and a blue line for Model 3.

Figure 8 involves taking the fitted probabilities from the probit models and aligning them with
the period for which they are designed to predict recession. We plot the predicted probability from
model 1 in black, model 2 in red and model 3 in blue. Across the four panels we can see that the
models usually spike at the right places. Perhaps unsurprisingly it is the double-dip recession of the
early 1980s where the models do best; here they have the first recession in the dataset for predicting
the second. However, almost all of the NBER recessions are predicted at a probability of 50% or
higher. For the longer term forecasts all recessions are identified with a probability of 25% or higher,
but this level is only marginal than some false positives. All models suggest there could have been
a recession in the years leading up to the actual 2001 downturn, but the strength of the suggestion
does increase relative to actual recessions as the time horizon for prediction extends.
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Table 3: Recession Forecast Models: Spread Topology (Maximum)
Months ahead to forecast (p)

0 1 2 3 6 12 18 24

Panel (a): Model 1 spread only
Constant -1.023*** -0.927*** -0.846*** -0.76*** -0.629*** -0.523*** -0.564*** -0.710***

(0.089) (0.086) (0.083) (0.08) (0.078) (0.086) (0.082) (0.080)
Spread -0.063 -0.142** -0.216*** -0.304*** -0.473*** -0.684*** -0.596*** -0.367***

(0.050) (0.051) (0.053) (0.055) (0.064) (0.079) (0.059) (0.046)

Panel (b): Model 2 with L1norm
Constant -1.61*** -1.525*** -1.465*** -1.338*** -1.055*** -0.689*** -0.503*** -0.591***

(0.115) (0.118) (0.119) (0.119) (0.107) (0.099) (0.097) (0.098)
Spread 0.052 -0.039 -0.131* -0.246*** -0.43*** -0.643*** -0.612*** -0.392***

(0.047) (0.052) (0.052) (0.053) (0.064) (0.078) (0.067) (0.052)

L1 norm 5.096*** 5.644*** 6.386*** 6.421*** 4.878*** 1.822** -0.668 -1.452*
(1.238) (1.135) (0.987) (0.941) (0.891) (0.642) (0.583) (0.600)

Panel (c): Model 3 with L1norm and period
Constant -1.629*** -1.534*** -1.467*** -1.334*** -1.066*** -0.693*** -0.499*** -0.596***

(0.114) (0.117) (0.119) (0.119) (0.108) (0.099) (0.097) (0.098)
Spread 0.053 -0.039 -0.131* -0.246*** -0.43*** -0.642*** -0.613*** -0.391***

(0.047) (0.052) (0.052) (0.053) (0.063) (0.078) (0.067) (0.052)

L1 norm 4.986*** 5.562*** 6.366*** 6.467*** 4.746*** 1.79** -0.650 -1.501*
(1.210) (1.132) (1.002) (0.967) (0.88) (0.649) (0.589) (0.623)

Period 0.009 0.005 0.001 -0.002 0.007 0.002 -0.002 0.003
(0.005) (0.005) (0.006) (0.006) (0.005) (0.006) (0.007) (0.006)

Panel (d): Model comparison (residual deviance)
Model 1 533.455 526.047 514.067 494.697 448.108 389.032 418.086 481.823
Model 2 460.895 446.333 425.155 410.261 399.043 381.598 416.933 477.217
Model 3 458.726 445.636 425.129 410.148 397.661 381.459 416.848 477.021
2 vs 1 -72.559*** -79.714*** -88.912*** -84.436*** -49.065*** -7.433** -1.154 -4.605*
3 vs 1 -74.729*** -80.411*** -88.937*** -84.549*** -50.447*** -0.14 -0.085 -0.196
3 vs 2 -2.169 -0.697 -0.025 -0.113 -1.382 -0.14 -0.085 -0.196

Notes: TDA calculated using 50 jumps of size 1 with a sliding window embedding of 100 observations and 10
landmark points. Spread is constructed on a bond equivalent basis following Estrella and Trubin (2006) and
Demeaned by subtracting the one year moving average. Significance denoted by * - 5%, ** - 1% and *** - 0.1%.

Figure 8: Predicted Recession Probability: Model with Spread and Monthly Maximum Topology

Panel (a): 0 Months Panel (b): 12 Months ahead

Panel (c): 18 Months ahead Panel (d): 24 Months ahead

Notes: TDA calculated using 50 jumps of size 1 with a sliding window embedding of 100 observations and 10
landmark points. Spread is constructed on a bond equivalent basis following Estrella and Trubin (2006). Probability
reports the predicted probability of recession in given month. Predicted probabilities are moved forward to relate to
the period t+ p being predicted and do not correspond to the time of the data used to form the prediction. Black
lines denote Model 1, red lines Model 2, and blue lines plot the predicted probability from Model 3.
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Table 4: Recession Forecast Models: Spread Topology (Average)
Months ahead to forecast (p)

0 1 2 3 6 12 18 24

Panel (a): Model 1 spread only
Constant -1.023*** -0.927*** -0.846*** -0.76*** -0.629*** -0.523*** -0.564*** -0.710***

(0.089) (0.086) (0.083) (0.08) (0.078) (0.086) (0.082) (0.080)
Spread -0.063 -0.142** -0.216*** -0.304*** -0.473*** -0.684*** -0.596*** -0.367***

(0.050) (0.051) (0.053) (0.055) (0.064) (0.079) (0.059) (0.046)

Panel (b): Model 2 with L1norm
Constant -1.572*** -1.491*** -1.45*** -1.323*** -1.028*** -0.666*** -0.485*** -0.586***

(0.114) (0.12) (0.118) (0.115) (0.104) (0.097) (0.094) (0.096)
Spread 0.051 -0.037 -0.13* -0.237*** -0.42*** -0.643*** -0.62*** -0.396***

(0.046) (0.051) (0.052) (0.052) (0.064) (0.077) (0.067) (0.052)

L1 norm 6.027*** 6.741*** 8.051*** 7.945*** 5.72*** 1.954* -1.093 -1.910**
(1.516) (1.49) (0.973) (1.011) (1.066) (0.775) (0.664) (0.702)

Panel (c): Model 3 with L1norm and period
Constant -1.573*** -1.491*** -1.451*** -1.324*** -1.027*** -0.665*** -0.484*** -0.588***

(0.113) (0.12) (0.119) (0.115) (0.104) (0.097) (0.094) (0.096)
Spread 0.049 -0.039 -0.129* -0.236*** -0.426*** -0.642*** -0.62*** -0.397***

(0.046) (0.051) (0.052) (0.052) (0.063) (0.078) (0.067) (0.052)

L1 norm 5.922*** 6.676*** 8.13*** 8.033*** 5.494*** 1.988* -1.082 -2.021**
(1.520) (1.519) (0.997) (1.039) (1.056) (0.796) (0.669) (0.737)

Period 0.016 0.008 -0.008 -0.008 0.026 -0.007 -0.003 0.017
(0.017) (0.018) (0.022) (0.026) (0.019) (0.028) (0.029) (0.019)

Panel (d): Model comparison (residual deviance)
Model 1 533.455 526.047 514.067 494.697 448.108 389.032 418.086 481.823
Model 2 468.524 453.294 429.707 415.479 405.113 383.288 416.07 476.716
Model 3 467.912 453.136 429.581 415.324 403.605 383.232 416.059 476.302
2 vs 1 -64.93*** -72.752*** -84.36*** -79.219*** -42.996*** -5.744* -2.016 -5.106*
3 vs 1 -65.543*** -72.911*** -84.485*** -79.373*** -44.503*** -0.056 -0.011
-0.414
3 vs 2 -0.613 -0.159 -0.126 -0.154 -1.508 -0.056 -0.011 -0.414

Notes: TDA calculated using 50 jumps of size 1 with a sliding window embedding of 100 observations and 10
landmark points. Spread is constructed on a bond equivalent basis following Estrella and Trubin (2006) and
Demeaned by subtracting the one year moving average. Significance denoted by * - 5%, ** - 1% and *** - 0.1%.

There is a suggestion from panel (a) of Figure 8 that the properties of the actual time periods of
recession are very different from those one year earlier. In this way we see the TDA based models
spike in the recessions in panel (a), but do not see any recession prediction from a spread only
model. Understanding such differences is a motivation for the multivariate modelling that brings
in additional macroeconomic and financial variables. That TDA is capturing much of this is an
encouragement for its wider applicability.

The evidence from the first augmentation of the yield spread with its TDA properties is that
there are significant improvements to be made to overall forecasting. Most of the horizons studied
here show significant reduced residual deviance arising from the extra variables. A similar position
is found over the horizons not featured herein.

6.2 Spread Topology: Average Monthly TDA Values

Table 4 uses the average values for the two TDA measure in the place of the maximums used in
Table 3. Note that model 1 does not contain any TDA variables and so panel (a) is identical in
both tables. We include panel(a) here for easier reference. Using the average values of the L1 norm
results in higher β2 estimates in absolute terms. This is partially to be expected since the average
values for any month are necessarily lower than the maximum. However, the continued significance
is a sign that the maxima were not simply the result of one particular days SWE. Panel (d) shows
that Models 2 and 3 continue to be regarded as better fits under the residual deviance test than the
basic, spread only, Model 1. Critically at the 12-month ahead forecast range the average L1 norm
helps Model 2 to be preferred to Model 1 at the 12-month horizon. Since the acid test is performance
1 year ahead the improvement offered by TDA is something of large interest.

Figure 9 is similar to Figure 8 as might be expected from the table comparison. We see again
that at the 0-month ahead level the code which embeds TDA identifies the recession much more
accurately, the blue spike in panel (a) being testament there to. Likewise when we move to 24-
months ahead there is a large amount of blue above the black line. Again the 18-month ahead shows
a number of times for which Model 3 is predicting a positive recession probability in a subset of
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Figure 9: Predicted Recession Probability: Model with Spread and Monthly Average Topology

Panel (a): 0 Months Panel (b): 12 Months ahead

Panel (c): 18 Months ahead Panel (d): 24 Months ahead

Notes: TDA calculated using 50 jumps of size 1 with a sliding window embedding of 100 observations and 10
landmark points. Spread is constructed on a bond equivalent basis following Estrella and Trubin (2006). Probability
reports the predicted probability of recession in given month. Predicted probabilities are moved forward to relate to
the period t+ p being predicted and do not correspond to the time of the data used to form the prediction. Black
lines denote Model 1, red lines Model 2, and blue lines plot the predicted probability from Model 3.

periods. The message from the average topology is thus in agreement with the maximal approach.

6.3 Demeaned Spread Topology: Average Monthly TDA Values

In the log-periodicity literature a wave of reducing period is placed over the time series this is done
in a way which removes the trend from the series. Hence as a second consideration we look at a time
series where the average spread for the past years trading has been subtracted6. We have already
seen that there are differences between the de-meaned series and the original spread, particularly
between the 2001 and 2008 recessions. We now consider how that has transferred into recesion
prediction.

Table 5 shows a key difference with the corresponding Table 3 shows the biggest changes come in
model 3, where the estimated period gains significance in the 6-month, 12-month and 24-month ahead
forecast models. The coefficients to be broadly similar in models 1 and 2, with the TDA augmented
models again providing a significantly lower residual deviance. From the increased significance of
period comes an improvement to the model fit, and hence reduction in the residual deviance, of
model 3.

Figure 10 also shares many similarities with it’s spread topology counterpart (Figure 8). The
1990 recession is predicted with a higher probability when the de-meaned spread topoglogy is used,
this following from the identification of periodic behavior being later than they were for the spread.
Recession in the early 1990s is the one for which the least accurate forecasting has been found
Estrella and Trubin (2006) and hence this marginal improvement is of interest. Mid 1960s false
positive remains with all models predicting a recession in 1968.

6.4 Demeaned Spread Topology: Average Monthly TDA Values

As a final example we take the average monthly TDA values for the regessors, constructing them
from the demeaned spread once more. Motivation for so doing is identical to our reasoning for

6The choice of 1 year preserves any annual seasonality, but alternatives would have served a similar purpose.
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Table 5: Recession Forecast Models: Demeaned Spread Topology (Maximum)
Months ahead to forecast (p)

0 1 2 3 6 12 18 24

Panel (a): Model 1 spread only
Constant -1.009*** -0.914*** -0.833*** -0.748*** -0.618*** -0.513*** -0.553*** -0.699***

(0.089) (0.086) (0.083) (0.08) (0.078) (0.086) (0.082) (0.080)
Spread -0.065 -0.143** -0.216*** -0.304*** -0.471*** -0.679*** -0.591*** -0.366***

(0.049) (0.05) (0.052) (0.054) (0.063) (0.078) (0.058) (0.046)

Panel (b): Model 2 with L1norm
Constant -1.582*** -1.462*** -1.362*** -1.23*** -0.903*** -0.704*** -0.539*** -0.561***

(0.134) (0.125) (0.124) (0.118) (0.094) (0.098) (0.099) (0.105)
Spread 0.021 -0.071 -0.164** -0.269*** -0.436*** -0.646*** -0.595*** -0.393***

(0.053) (0.054) (0.053) (0.053) (0.065) (0.079) (0.063) (0.053)

L1 norm 5.457*** 5.602*** 5.868*** 5.719*** 3.342*** 2.244** -0.174 -1.832*
(1.548) (1.425) (1.357) (1.207) (0.782) (0.71) (0.618) (0.891)”

Panel (c): Model 3 with L1norm and period
Constant -1.592*** -1.472*** -1.377*** -1.245*** -0.921*** -0.719*** -0.545*** -0.534***

(0.132) (0.123) (0.121) (0.115) (0.096) (0.1) (0.1) (0.104)
Spread 0.017 -0.076 -0.17** -0.277*** -0.445*** -0.656*** -0.597*** -0.394***

(0.053) (0.054) (0.053) (0.054) (0.067) (0.08) (0.064) (0.053)

L1 norm 5.367*** 5.496*** 5.728*** 5.563*** 3.225*** 2.164** -0.194 -1.741*
(1.504) (1.38) (1.296) (1.137) (0.737) (0.688) (0.615) (0.853)

Period 0.008 0.009 0.011* 0.011* 0.011 0.01 0.004 -0.032*
(0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.005) (0.015)

Panel (d): Model comparison (residual deviance)
Model 1 529.85 522.348 510.338 491.004 444.676 386.211 415 478.225
Model 2 445.157 440.44 429.013 419.393 416.556 373.619 414.911 471.287
Model 3 443.214 438.248 425.738 415.766 413.105 371.61 414.609 465.498
2 vs 1 -84.693*** -81.909*** -81.326*** -71.61*** -28.12*** -12.592*** -0.088 -6.938**
3 vs 1 -86.636*** -84.1*** -84.6*** -75.237*** -31.572*** -2.008 -0.302 -5.790*
3 vs 2 -1.943 -2.191 -3.275 -3.627 -3.452 -2.008 -0.302 -5.79*”

Notes: TDA calculated using 50 jumps of size 1 with a sliding window embedding of 100 observations and 10
landmark points. Spread is constructed on a bond equivalent basis following Estrella and Trubin (2006) and
Demeaned by subtracting the one year moving average. Significance denoted by * - 5%, ** - 1% and *** - 0.1%.

Figure 10: Predicted Recession Probability: Model with Demeaned Spread and Monthly Maximum
Topology

Panel (a): 0 Months Panel (b): 12 Months ahead

Panel (c): 18 Months ahead Panel (d): 24 Months ahead

Notes: TDA calculated using 50 jumps of size 1 with a sliding window embedding of 100 observations and 10
landmark points. Spread is constructed on a bond equivalent basis following Estrella and Trubin (2006) and
Demeaned by subtracting the one year moving average. Probability reports the predicted probability of recession in
given month. Predicted probabilities are moved forward to relate to the period t+ p being predicted and do not
correspond to the time of the data used to form the prediction. Black lines denote Model 1, red lines Model 2, and
blue lines plot the predicted probability from Model 3.
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Table 6: Recession Forecast Models: Demeaned Spread Topology (Average)
Months ahead to forecast (p)

0 1 2 3 6 12 18 24

Panel (a): Model 1 spread only
Constant -1.009*** -0.914*** -0.833*** -0.748*** -0.618*** -0.513*** -0.553*** -0.699***

(0.089) (0.086) (0.083) (0.08) (0.078) (0.086) (0.082) (0.080)
Period -0.065 -0.143** -0.216*** -0.304*** -0.471*** -0.679*** -0.591*** -0.366***

(0.049) (0.050) (0.052) (0.054) (0.063) (0.078) (0.058) (0.046)

Panel (b): Model 2 with L1 norms
Constant -1.542*** -1.425*** -1.342*** -1.212*** -0.87*** -0.683*** -0.53*** -0.564***

(0.138) (0.132) (0.129) (0.122) (0.094) (0.095) (0.096) (0.101)
Spread 0.018 -0.073 -0.169** -0.269*** -0.434*** -0.644*** -0.597*** -0.395***

(0.053) (0.054) (0.052) (0.053) (0.065) (0.078) (0.063) (0.052)

L1 norm 6.566** 6.76*** 7.481*** 7.161*** 3.748*** 2.525** -0.339 -2.287*
(2.023) (1.949) (1.657) (1.608) (1.086) (0.919) (0.662) (1.078)

Panel (c): Model 3 with L1 norms and period
Constant -1.543*** -1.426*** -1.343*** -1.213*** -0.873*** -0.689*** -0.534*** -0.542***

(0.137) (0.131) (0.129) (0.121) (0.094) (0.096) (0.096) (0.100)
Spread 0.016 -0.075 -0.17** -0.271*** -0.438*** -0.655*** -0.6*** -0.395***

(0.052) (0.054) (0.052) (0.053) (0.065) (0.08) (0.064) (0.052)

L1 norm 6.514** 6.703*** 7.428*** 7.082*** 3.641*** 2.378** -0.376 -2.076*
(2.042) (1.966) (1.674) (1.605) (1.041) (0.859) (0.654) (1.004)

Period 0.011 0.011 0.008 0.012 0.021 0.036 0.017 -0.391*
(0.019) (0.019) (0.018) (0.019) (0.02) (0.021) (0.02) (0.194)

Panel (d): Model comparison (residual deviance)
Model 1 529.85 522.348 510.338 491.004 444.676 386.211 415 478.225
Model 2 453.235 447.794 433.458 423.488 421.664 375.564 414.759 471.155
Model 3 453.023 447.6 433.345 423.251 420.94 373.662 414.42 464.065
2 vs 1 -76.615*** -74.555*** -76.88*** -67.516*** -23.012*** -10.648** -0.24 -7.07**
3 vs 1 -76.827*** -74.748*** -76.993*** -67.752*** -23.736*** -1.901 -0.34 -7.09**
3 vs 2 -0.212 -0.193 -0.113 -0.237 -0.724 -1.901 -0.34 -7.09**

Notes: TDA calculated using 50 jumps of size 1 with a sliding window embedding of 100 observations and 10
landmark points. Spread is constructed on a bond equivalent basis following Estrella and Trubin (2006) and
Demeaned by subtracting the one year moving average. Significance denoted by * - 5%, ** - 1% and *** - 0.1%.

considering both maximum and average for the spread topology. Results presented in Table 6 are
again very similar to the other cases. As with the spread switching to average values yields much
larger coefficients on the periodicity but very similar coefficients on the L1 norm. In comparison to
the maximum monthly TDA case period is no longer significant in the 2 month and 3 month ahead
models. There are also reductions in the residual deviance gain at the shorter forecast horizons
sitting alongside increased margins at the 24 month ahead horizon.

Figure 11 shows strong consistency with the messages from Figures 8 to 10 in that the best fits
come for the 1980s recession, the TDA augmented model does classify recessions at the 0-month
ahead range and the most accurate fits come from the 12-month ahead forecasts of panel (b). In
Figure 11 this is at its most pronounced, but the tendancy to predict recessions will ocurr later than
they did using longer horizons is evident in all. In the consistency of the message across the four
cases discussed herein there is a robustness of conclusion offered.

6.5 Summary

These four cases have shared many of the same conclusions. TDA works well in the same period,
with a particularly good fit to the 1980s recession. Moving to further ahead time steps there is
always a slight improvement of fit but this is usually insignificant once we move past the 6-month
ahead forecasting. In the widely reported year ahead the L1 norm does become significant and this is
the first evidence that TDA can offer an improvement to the standard, spread only, model. Residual
deviance improvement return in Model 3 at the 24-month ahead range. At times TDA can be an
aid in predicting recessions, but at others it is merely a marginal improvement. As presented the
results represent a first step in understanding.

7 Discussion

Uncovering the topology of the time series has potential to help forecast recessions. This opening was
highlighted in the financial literature on crash prediction. For that literature last minute predictions
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Figure 11: Predicted Recession Probability: Model 4 with Demeaned Spread and Average Topology

Panel (a): 0 Months Panel (b): 12 Months ahead

Panel (c): 18 Months ahead Panel (d): 24 Months ahead

Notes: TDA calculated using 50 jumps of size 1 with a sliding window embedding of 100 observations and 10
landmark points. Spread is constructed on a bond equivalent basis following Estrella and Trubin (2006) and
Demeaned by subtracting the one year moving average. Probability reports the predicted probability of recession in
given month. Predicted probabilities are moved forward to relate to the period t+ p being predicted and do not
correspond to the time of the data used to form the prediction. Black lines denote Model 1, red lines Model 2, and
blue lines plot the predicted probability from Model 3.

have more value; investors wish to take advantage of the growing market and only switch to short
positions when they are certain that they will not make a loss so doing. Work by Gidea and Katz
(2018) and Gidea et al. (2018) has shown that TDA is associated with the prediction of crashes in
financial time series. In this there is motivation for considering TDA in the yield spread context.

Periodicity as currently understood is associated with the exit from recessions, it is therefore not
a signal of impending recession. However, our novel approach to capturing periodic behaviour in
noisy time series reveals that there are also episodes of cyclicity in the run up to some recessions.
In encountering results like this we caution making too strong inferences; we do not know what is
creating the periodicity and whether it is something that was uniquely present in those particular
recession build ups. Our results confirmed that periodicity is observed on the exit and if longer
periods are observed the economy is expected to be in a strong state; Clark (2004) suggesting the
length of periods declines through recovery.

In recession prediction we seek to forecast much further ahead than the asset pricing literature
to which Gidea and Katz (2018) speaks. Here we want to know whether there will be a recession
a year from now, investor behaviour has not yet changed because there will still be growth up that
recession point. This is then an exploratory study to see whether there is behaviour within the
yield spread that would predict recessions at the longer time scale. We found that at many time
periods the L1 norms had significant coefficients, and the periodicity also had some significance.
Residual deviance measures showed that the persistence landscapes do contain information about
forthcoming recessions at a longer ahead time period.

For extending the understanding of yield curves over time, and appreciating the way that trans-
lates into recessions, TDA has a role. TDA helps practitioners and interest rate setters alike see what
is happening in the market. There is little to choose between using either the spread or the version
with the 12-month rolling average subtracted. The former offers simplicity whilst the latter better
represents the log-periodicity literature. Using the yield spread is not without question, we used the
bond-equivalence on the three month rate because of its high forecasting behaviour (Estrella and
Trubin, 2006), but there are others who do not make such adjustments, or who consider the one
year spread instead. For the demeaned version there are also potential questions on the using one
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year, further work in this direction would cast light on the importance of that decision.
Additional insights into the economy can be made from the TDA of the yield spread time series

however. That Model 3 is putting forward signals of recession in current months is another voice
in the debate about whether the US will enter a recession soon. It is early days and because of the
time taken by the NBER to make decisions on classifying the time as a recession it may be some
time before we will know if these signs are false positives. It should be noted the yield spread only
model has not been so quick to suggest recession soon.

This paper is very much a first draft on the topic. It highlights potential but leaves much to be
explored. The promise is good and the precedent is set.

8 Conclusions

Demonstrating a novel way of recovering the properties of time series with data topology we have
shown how robust periodicity estimates can help understand the probability of recession. At almost
all time frames we evidence significant reductions in residual deviance, with equally highly significant
coefficients on the TDA measures in our probit regressions. Using a sliding window embedding on
the bond-equivalent yield spread we showed that there are clear episodes of “chaotic” behaviour of
the type seen in asset pricing markets. Such in turn makes classification of periods as recessions
much easier. We evidence mild improvements to the predictions, but there is still room for much
greater improvement to match the levels seen from TDA in other financial time series.

A number of questions emerge, including the parameters of the persistent homology, the choice
of series upon which to perform the TDA and the potential for robustness across countries. There
is also scope for future research to understand what precisely the topology is picking up. However,
perhaps the most pertinent question to arise from the work presented is whether there is evidence
in the topology that would inform on the yield curve inverting. If there is something within that,
and given the rule of thumb link between inversion and recession, there may be a further productive
line for recession prediction there.

Notwithstanding the questions raised for future research, and the potential for further robustness
work, the results of this paper do point to the behaviour of the spread, as well as the spread itself,
as being important in recession forecasting. We evidenced the existence of periodicity in the months
following recessions, but have taken the understanding through the full US yield spread time series.
Marginal improvements have been made with scope for more.
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